Some combinatorial theorems equivalent to the prime ideal theorem
نویسندگان
چکیده
منابع مشابه
Restricted versions of the Tukey-Teichmüller theorem that are equivalent to the Boolean prime ideal theorem
We formulate a restricted version of the Tukey-Teichmüller Theorem that we denote by (rTT). We then prove that (rTT) and (BPI) are equivalent in ZF and that (rTT) applies rather naturally to several equivalent forms of (BPI): Alexander Subbase Theorem, Stone Representation Theorem, Model Existence and Compactness Theorems for propositional and first-order logic. We also give two variations of (...
متن کاملS - Fuzzy Prime Ideal Theorem
The notions of a S fuzzy ∧ sub semi lattice, a S fuzzy ideal and a S fuzzy prime ideal of a bounded lattice with truth values in a bounded ∧ sub semi lattice S are introduced which generalize the existing notions with truth values in a unit interval of real numbers. Finally, S fuzzy prime ideal theorem is proved. 2010 AMS Classification: 03G10, 46H10, 06D50, 08A72
متن کاملPrime Ideal Theorem for Double Boolean Algebras
Double Boolean algebras are algebras (D,u,t, , ,⊥,>) of type (2, 2, 1, 1, 0, 0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under u (resp. t). A filter F is called primary if F 6= ∅ and for all x ∈ D we have x ∈ F or x ∈ F . In this note we prove t...
متن کاملSome Restricted Lindenbaum Theorems Equivalent to the Axiom of Choice
Dzik (1981) gives a direct proof of the axiom of choice from the generalized Lindenbaum extension theorem LET. The converse is part of every decent logical education. Inspection of Dzik’s proof shows that its premise let attributes a very special version of the Lindenbaum extension property to a very special class of deductive systems. The problem therefore arises of giving a direct proof, not ...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1973-0319769-3